Mannasim Framework Classes Manual

The Manna Research Group
10 de fevereiro de 2006

1 Mannasim classes

This document provides a description of the principal classes that constitutes Mannasim. Each
class description will be provided with a class summary and an enumeration of its fundamental
methods and fields.

The classes are detailed acording to the following structure:

FILES
Presents the files where the class is defined and implemented.

EXTENDS
If the class inherits some features from other ones, these classes are specified in this subsection.

METHODS
Here the class essential methods are listed and explained. Note that the explanation concerns
the class functionality not how it actually implements it.

Field
Here the class essential fields are listed and explained.

The order of classes description is defined as follows:

e Sensor Node

e DataGenerator

e TemperatureDataGenerator
e TemperatureAppData

e Processing

e SensedData

e OnDemandData

e OnDemandParameter

e SensorBaseApp

e CommonNodeApp



ClusterHead App

This particular arrangement is due to Wireless Sensor Networks tripod sensing-processing-

disseminating.

1.1

SensorNode Class

FILES

sensorNode.h and sensorNode.cc.

NS-

EXTENDS
2 MobileNode class.

DESCRIPTION

This class represents a wireless sensor node. It extends NS-2 MobileNode class adding specific
sensor nodes characteristics as power consumption for sensing and processing activities, instruc-
tions executed per seconds by its microcontrole, states of sensor parts (processor, transceptor,
sensing devices). The SensorNode class was the first step taken in the implementation of the
simulator and also can be used as an initial approach for the development of different sensor
node types.

METHODS

void SensorNode: :selfTest() — performs a sensor node self test verifying its proper func-
tioning. IMPORTANT: this method isn’t implemented yet.

void SensorNode::sleep() — turns the sensor node off when necessary. Stop all of its
applications.

void SensorNode::wakeUp() — wakes the sensor node up after a sleepy period. Start all
of its applications.

double SensorNode::sensingPower () — gets sensor node sensing energy consumption.

double SensorNode: :processingPower () — gets sensor node processing energy consump-
tion.

int SensorNode::instructionsPerSecond() — gets sensor node instructions per second
executed by its processor.

FIELDS

AppList apps_ — the list of WSN applications witch the sensor node is associated to. The
AppList type is simple an ST IEI list of AppData objects (see NS-2 documentation for further
details).

int instructionsPerSecond_— the number of instructions the nodes processor can execute
in a second. This field has its value defined in TCL simulation script.

!C4+ Standard Template Library



e double processingPower_ — the energy consumption of the sensor node in processing ac-
tivities. This field has its value expressed in watts (joules/second) and is defined in TCL
simulation script.

e double sensingPower_ — the energy consumption of the sensor node in sensing activities.
This field has its value expressed in watts (joules/second) and is defined in TCL simulation
script.

e int sensorUseState — the sensor state. Indicates whether the node’s sensing activity is
in use or not.

e int processorUseState — the processor state. Indicates whether the node’s processing
activity is in use or not.

e int transceptorUseState — the transceptor state. Indicates whether the node’s dissemi-
nation activity is in use or not.

1.2 Battery Class
FILES
battery.h and battery.cc

EXTENDS
NS-2 EnergyModel class.

DESCRIPTION
This class represents sensor nodes power supply. It extends NS-2 EnergyModel class. The Bat-
tery class can be used to implement all different kinds of existing battery models. The class
contains methods to turn sensor node on and off, put it into sleep and wake it up. Also contains
methods to decrease energy when a sensing, processing or disseminating job is performend by
the sensor node.

METHODS

e void Battery::DecrSensingEnergy(double sensing time, double sensing power) —
computes the energy spent by a sensing task and reduce energy stock by this amount.

e void Battery::DecrProcessingEnergy(int number_instructions, double instructions_per_sec«
double processing power) — computes the energy spent by a processing task and reduce
energy stock by this amount. .

e void Battery::setNodeOn() — turns sensor node on.
e void Battery::setNodeOff () — turns sensor node off.
e void Battery::sleep() — puts node battery in sleep mode.

e void Battery::wakeUp() — wakes up the sleepy node battery.

FIELDS
All fields are inherited from NS-2 EnergyModel. (see NS-2 documentation for futher details).



1.3 DataGenerator Class

FILES
dataGenerator.h and dataGenerator.cc

EXTENDS
NS-2 TclObject class.

DESCRIPTION
This class simulates the sensing task of a wireless sensor node. With methods to adjusts sensing
interval, generate and collect synthetic data, the DataGenerator class also works as a base class
for futher specialized sensed information like for example temperature, light, magnetic fields etc.
The data created by this class is encapsulated as an AppData object (see NS-2 documentation
for further details).

Within DataGenerator files, SensingTime class is also defined. This timer class in conjunc-
tion with the defined sensing interval acts in periodic sensing.

METHODS

e void DataGenerator: :generateData() — simulates the sensing activity, gets data from
collect() method and deliver it to sensor processing module.

e virtual AppData* DataGenerator::collect() — the truly data generator function. Cre-
ates specific synthetic data, encapsulates it and return to generateData() method. It’s a
virtual method in DataGenerator class, so it must be overloaded.

e void DataGenerator::insertInterference() — inserts interference in data gathered by
the sensor. This method hasn’t been implemented yet.

e void DataGenerator: :start() — schedules the first sensing activity if the network has
periodic sensing.

e void DataGenerator::stop() — stops the sensing activity and drops all scheduled sensing
events.

e void DataGenerator::setSensingInterval(double si) — sets the sensing interval for a
periodic sensing network. Actually all kinds of sensing should set the sensing interval, in
continuous sensing for example, this value should be set as small as possible.

e double DataGenerator::getSensingInterval() — informs the sensing interval of the
network. This field has its value defined in TCL simulation script.

FIELDS

e AppDataType type_ — the identity of the data generator in terms of application data type.

e SensorAppList app- — the list of sensor applications associated with the data generator.
The SensorAppList type is simple an STL list of SensorBaseApp (see Section [1.10)) objects.

e double sensing interval_ — the sensing interval for data gathering.



e int sensing type_— the way the sensor node, and consequently the DataGenerator class, is
oriented to gather data. Possible values are PROGRAMMED, CONTINUOUS, ON_DEMAND
and EVENT_DRIVEN representing respectively periodic, continuous, on demand and event
driven data sensing.

1.4 TemperatureDataGenerator Class

FILES

temperatureDataGenerator.h and temperatureDataGenerator.cc

EXTENDS

DataGenerator class.

DESCRIPTION

This class simulates temperature sensing task of a wireless sensor node. TemperatureDataGe-
nerator extends DataGenerator adding characteristics proper for temperature data. Synthetic
temperature generation is based in Gaussian Distribution so average and standard deviations
are fields of this class.

METHODS

e virtual AppData* DataGenerator::collect() — the truly temperature data generator
method. Creates temperature synthetic data, encapsulates it in a TemperatureAppData
object (see Section |1.5)) and deliver this new object for further processing.

e double TemperatureDataGenerator::getAvgMeasure () —returns the average measure for
temperature data generation.

e void TemperatureDataGenerator: :setAvgMeasure(double avg measure) — adjusts the
average measure for temperature data generation.

e TemperatureAppData* TemperatureDataGenerator: :getMaximumAllowedValue() —return
the maximum allowed temperature value that can be generated.

FIELDS

e RNG* rand_— random number used to generate synthetic temperature data.
e double avg measure — average measure for synthetic temperature data generation.

e double std_deviation — standard deviation measure for synthetic temperature data ge-
neration.

e double maximumTemperatureValue — maximum temperature value allowed to be genera-
ted.



1.5 TemperatureAppData Class

FILES
temperatureAppData.h and temperatureAppData.cc

EXTENDS
NS-2 AppData class.

DESCRIPTION
This class encapsulates raw data generated by TemperatureDataGenerator class. Objects of this
class are sent to the processing module.

METHODS

e AppData * TemperatureAppData::copy() — creates a copy of temperature application
data object.

e int TemperatureAppData::size() const — informs application data size in bytes.

e bool TemperatureAppData::checkEvent (AppData* data_) —checks if the parametric data
represents an event considering the object data. For example, temperature value get grea-
ter? This method is used by event driven WSN.

e bool TemperatureAppData::compareData(AppData* data, int operation) —compares
parametric data according to specified operation. This method is used by on demand WSN.

e double TemperatureAppData::data() — returns temperature data from application data.

e void TemperatureAppData::setData(double data) — adjusts temperature data of appli-
cation data.

e double TemperatureAppData::time() — returns timestamp of application data.

e void TemperatureAppData::setTime(double time) — adjusts timestamp of application
data.

e int & TemperatureAppData::getPriority() — return application data priority (Usefull
for temperature data delivery).

e void TemperatureAppData::setPriority(int p) — set application data priority (Usefull
for temperature data delivery).

FIELDS

e double data_ — temperature data gathered in sensing task.
e double time_ — timestamp for temperature data.

e int priority_ — temperature data priority (Usefull for temperature data deliver).



1.6 Processing Class

FILES
processing.h and processing.cc

EXTENDS
NS-2 TclObject class.

DESCRIPTION
This class provides a foundation for all kinds of data processing over sensed data in a sensor
node. Every sensed data goes through processing before dissemination. Specialized data pro-
cessing should inherit from Processing class.

METHODS

e void AggregateProcessing::recvData(AppData*x data_) — receives data from various
sources, process it and return to the application for dissemination. This method must
be overloaded.

e AppData * Processing::processRequest(AppData* data) — simulates processing acti-
vity. Gets the raw data from sensing activity, process it, computes energy spent and returns
processed data. This method should be overloaded in extensions of the Processing class.

e AppData* Processing::processSensedData(AppData* data., AppData* eventData.) —
simulates processing activity for event driven WSN.

e AppDatax Processing::process_request_data(OnDemandParameter* parameter, int request_type
— manages requests from an outsider observer in a on demand WSNE]. This method only
redirects the raw data to further specialized data processing.

e AppData* Processing::process_real request(AppData* data_, int operation) — pro-
cess real requests from an on demand WSN. In real requests the sensor node drops all data
from its buffer, gather new one, process and deliver it to the disseminating module.

e AppData* Processing::process_buffer_request(AppData* data_, int operation) — pro-
cess buffer requests from an on demand WSN. In buffer requests the sensor node process
data from its buffer and give the results to the disseminating module.

e AppData * CommonNodeApp::process_average request(AppData* data_,int operation)
— process average requests from an on demand WSN. This method hasn’t being implemented
yet.

e void Processing::resetData() — clears the sensor processed data buffer.

e SensedData * Processing::getProcessedData() — returns data generated by the pro-
cessing activity.

FIELDS

2In an on demand WSN the outsider observer make requests to the network about data of its interest



e SensedData* info_ — processed data buffer, data stored here is ready for dissemination.
For more details about SensedData data type see Section .

e SensorBaseApp * app- — application attached to the sensor node. Usefull in on demand
WSN.

e SensorNode* sensor node_ — sensor node where the processing task takes place. Used for
energy contability proposes.

1.7 SensedData Class

FILES
sensedData.h and sensedData.cc

EXTENDS
NS-2 AppData class.

DESCRIPTION
This class represents sensed data after processing. Data contained in SensedData is ready for
dissemination so the class provides networking information such as source node identification,
message type, message priority among others. SensedData class acts as dissemination message
for processed data witch is stored in a data buffer.

METHODS

e AppData * SensedData::copy() — creates a copy of the sensed data object.

e bool SensedData::existsData() — informs if there is processed data stored in data buffer.
e AppDatalist SensedData::getData() — returns processed data stored in data buffer.

e int & SensedData::msgType() — returns a reference to sensed data message type.

e int & SensedData::node_id() — returns a reference to source node identification.

e int & SensedData::eventType() — returns a reference to sensed data event type. This
method is designed to be used in a event driven application.

e double & SensedData::timeStamp() — returns a reference to sensed data timestamp;

e int SensedData::priority() — returns sensed data priority. Useful during disseminating
tasks.

e void SensedData::set_priority(int p) — adjusts sensed data priority.

e void SensedData::insertNewData(AppData* data) — inserts new processed data into
data buffer.

FIELDS

e int node_id_ — source node identification for sensed data dissemination purposes.



e int msgType_ — type of the message to be disseminated to the network.
e int priority._ — priority of sensed data message.

e int eventType_ — type of the event that caused sensed data processing.
e double timestamp_ — sensed data timestamp.

e AppDatalist infoRepository — sensed data buffer. Storages all data processed by the
sensor node.

1.8 OnDemandData Class
FILES

onDemandData.h and onDemandData.cc

EXTENDS
SensedData class.

DESCRIPTION
This class represents request messages from an outsider of the WSN. Requests are interes-
ting for on demand applications where dissemination only occurs when someone requests data.
OnDemandData uses inherited infoRepository field from SensedData to storage OnDemand-
Parameter queries (see Section .

METHODS
e AppData * OnDemandData::copy() — creates a copy of the current OnDemandData object.
e int OnDemandData::size() const — returns OnDemandData object size in bytes.

e int & OnDemandData::requestType() — returns a reference for the request type field.

FIELDS

e int request_type_ — message request type for a on demand WSN. Possible values include
REAL, BUFFER and AVERAGE.

1.9 OnDemandParameter Class

FILES

onDemandParameter.h and onDemandParameter.cc

EXTENDS
NS-2 AppData class.

DESCRIPTION
This class represents queries sent within OnDemandData request messages. In on demand
applications, requests follows this line:



“Disseminate sensor node data if it’s greater than X.
An OnDemandParameter object carries the X value and also the kind of operation to be realized
for request validation.

METHODS

e AppData * OnDemandParameter :: copy() — creates a copy of the current OnDemand-
Parameter object.

e int OnDemandParameter::size() comnst — returns OnDemandParameter object size in

bytes.

e AppData * OnDemandParameter::data() — returns sample data used for request valida-
tion.

e int & OnDemandParameter :: operation() —returns a reference for the operation to be

realized for request validation.

FIELDS

e AppData* data_ — sample data used for request validation.

e int operation_ — operation to be realized for request validation. Currently supported
operations include GREATER _THAN, LESS_THAN and EQUAL.

1.10 SensorBaseApp Class
FILES

sensorBaseApp.h and sensorBaseApp.cc

EXTENDS
NS-2 Application class.

DESCRIPTION
This class is the base for WSN applications, specialized node applications like a common node ap-
plication and a cluster head application should extends SensorBaseApp class. With instances of
DataGenerator, Processing and SensorNode classes, SensorBaseApp class congregates the WSN
tasks tripod: sensing, processing and disseminating with special attention to the disseminating
task.

Within SensorBaseApp files, DisseminatingTimer class is also defined. This timer class in
conjunction with the defined disseminating interval acts in periodic disseminating.

METHODS

e virtual void disseminateData() — disseminates sensed data into the network after its
processing. This method is virtual so it must be overloaded.

e virtual void disseminateData(AppData* data) — disseminates sensed data into the
network after its processing. In this method disseminating data is passed as parameter
and as the method is virtual it must be overloaded.

10



e virtual void recvSensedData(AppData* data_) — receives data gathered by the node’s
sensors, process it and disseminate the results. This method is virtual so it must be
overloaded.

e virtual void recvSensedData(AppData* data_, AppData* eventData.) —receives data
gathered by the node’s sensors, process it and if data corresponds to a valid event dissemi-
nate the results. This method is virtual so it must be overloaded.

e void SensorBaseApp::start() — schedules the first sensing/disseminating tasks if the
network application is periodic.

e void SensorBaseApp: :stop() — drops all scheduled events, stopping also all sensing tasks.

e void SensorBaseApp::insertNewGenerator (DataGenerator* gen) — inserts a new Da-
taGenerator object (or one of its extensions) into data generators list of the application.

e DataGenList SensorBaseApp::getGenList() — returns the data genetators list of the ap-
plication.

e SensorNode * SensorBaseApp::sensor_node() — returns a reference to the sensor node
attached to the application.

FIELDS

e SensorNode* sensor_node_ — sensor node where the applications is inserted.

e DataGenList gen_ — list of data generator objects (or one of its extensions). DataGenList
type is simple a STL list data structure of data generator objects.

e Processing* processing_ — processing module of the sensor node. Gets raw data from a
data generator object and returns processed data.

e int disseminating type_— the way the sensor node, and consequently the SensorBaseApp
class, is oriented to disseminate data.. Possible values are PROGRAMMED, CONTINU-

OUS, ON_DEMAND and EVENT_DRIVEN representing respectively periodic, continuous,
on demand and event driven dissemination.

e double disseminating interval_ — the application disseminating interval.
e DisseminatingTimer* dissTimer_ — timer used .

e int destination_id_ — node identification for data dissemination.

1.11 CommonNodeApp Class
FILES

commonNodeApp.h and commonNodeApp.cc

EXTENDS
SensorBaseApp class.

11



DESCRIPTION
This class specializes SensorBaseApp class providing implementations to its pure virtual methods.
The CommonNodeApp class represents a general purpose node application.

METHODS

e void CommonNodeApp::disseminateData() — disseminates sensed data into the network
after its processing. Overloaded method.

e void CommonNodeApp::disseminateData(SensedData* data_) —disseminates sensed data
into the network after its processing. In this method disseminating data is passed as para-
meter. Overloaded method.

e void CommonNodeApp::recvSensedData(AppData* data.) —receives data gathered by the
node’s sensors (via DataGenerator object), activates processing tasks and if necessary (con-
tinuous dissemination case) disseminate the results. Overloaded method.

e void CommonNodeApp::recvSensedData(AppData* data_, AppData* eventData ) — re-
ceives data gathered by the node’s sensors (via DataGenerator object), activates processing
tasks and if data corresponds to a valid event disseminate the results. Overloaded method.

e void CommonNodeApp::process_data(int size, AppData* data) — process on demand
requests from outsider observer. This method overload NS-2 Process: :process_data()
and is invoked in Agent: :recv().

e inline bool CommonNodeApp::isDead() — informs whether or not the sensor node ran
out of energy.

FIELDS
All fields are inherited from SensorBaseApp class.

1.12 ClusterHeadApp Class

FILES
ClusterHeadApp.h and ClusterHeadApp.cc

EXTENDS
SensorBaseApp class.

DESCRIPTION
This class specializes SensorBaseApp class providing implementations to its pure virtual methods.
The ClusterHeadApp class simulates the behavior of a Cluster Head in a hierarchical WSN. So
in other to accomplish its objectives a sort of fields and methods dealing with the list of nodes
under the cluster supervision is provided.

METHODS

e void ClusterHeadApp::disseminateData() — disseminates sensed data into the network
after its processing. Overloaded method.

12



void ClusterHeadApp::process_data(int size, AppDatax data) — process on demand
requests from outsider observer. This method overload NS-2 Process: :process_data()
and is invoked in Agent: :recv().

void ClusterHeadApp: :processRequest (AppData*x data) — forwards a request message
for all nodes in cluster head children list.

void ClusterHeadApp::insert_child(int id) — insert node identification into the clus-
ter head children list.

void ClusterHeadApp::remove_child(int id) — remove parametric node identification
from the cluster head children list.

bool ClusterHeadApp::search child(int id) — search the cluster head children list for
a node whose identification is the method parameter.

FIELDS

IdList child 1ist — the cluster head children list. Storages identification number of all
nodes under the cluster head responsability.

13



	Mannasim classes
	SensorNode Class
	Battery Class
	DataGenerator Class
	TemperatureDataGenerator Class
	TemperatureAppData Class
	Processing Class
	SensedData Class
	OnDemandData Class
	OnDemandParameter Class
	SensorBaseApp Class
	CommonNodeApp Class
	ClusterHeadApp Class


